ZOMEWORKS
 CORPORATION

Passive Energy Products
Environmentally and Financially Sustainable: Do not rely on Hydrocarbons or Tax Credits

POLE HEIGHT FOR TRACKERS

One needs a tall pole because the low corner of the array tilts and turns far below the gimbal.

TWO ANGLES

The seasonal adjustment angle \mathbf{A} and the daily rotation angle \mathbf{B} along with the length and width of the array determine how low the corner goes.

The Seasonal Tilt

The seasonal tilt lowers the centerline $1 / 2$ the Length times the Sin of angle \mathbf{A} below the pole top.

Seasonal Tilt $=\mathbf{L} / \mathbf{2}$ SIN A

The Daily Rotation

F-168 TRACKER

The maximum allowable rotation of the Tracker from center is 45°. The daily rotation turns the corner of the array lower yet by $1 / 2$ the Width times the Cosine of angle A times the Sine of angle \mathbf{B} where the angle \mathbf{B} is the angle the Tracker has turned about the axle from noon (usually 45°).

Daily Rotation = W/2 (COS A) SIN B

Example 1:

ZOMEWORKS
 CORPORATION

Passive Energy Products

Environmentally and Financially Sustainable: Do not rely on Hydrocarbons or Tax Credits
A F-Series-168 Track Rack ${ }^{\mathrm{TM}}$ with a maximum rack dimension of $\mathrm{L}=192$ " (North, South dimension) and $\mathrm{W}=169$ "
(East, West dimension) is set permanently with a seasonal tilt of 30 degrees.
How tall should the pole be if the corner can reach to within 12" of the ground?
The seasonal tilt of 30° turns the array down:

$$
\begin{gathered}
192 " / 2 \times \operatorname{Sin} 30 \text { degrees } \\
=(96) \times .5 \\
=48 "
\end{gathered}
$$

A daily rotation of 45° turns the array corner down:

$$
\begin{gathered}
169 " / 2(\operatorname{Cos} 30 \operatorname{Sin} 45) \\
=84.5(.6124) \\
=51-3 / 4 "
\end{gathered}
$$

For the corner to always be held at least 12 " above the ground, the pole would be 111-3/4" long.
Seasonal Tilt + Daily Rotation + Ground Clearance

$$
\begin{gathered}
=48 "+51-3 / 4 "+12 " \\
=111-3 / 4 "
\end{gathered}
$$

Example 2:

The same Track Rack ${ }^{\mathrm{TM}}$ is tilted 45° during the winter. How long a pole would it need then?
Seasonal tilt -
(96") Sin $45^{\circ}=67.88 "$
Daily rotation -
(84.5") $\operatorname{Cos} 45^{\circ} \operatorname{Sin} 45^{\circ}=42.25$
Grand Total = 110.13"

Add 12 " for the ground clearance and the pole height would need to be $110.13+12 "=122.13$ " tall.

